Dat Do
Brief Biography
I am currently a Ph.D. candidate in Statistics at the University of Michigan, where I am fortunate to be advised by Professor Jonathan Terhorst and Professor Long Nguyen. Before coming to the University of Michigan, I graduated as the valedictorian of Hanoi University of Science, class of 2019.
Here is a recent version of my resume: CV
Education
September 2019 - Present: University of Michigan
September 2015 - June 2019: Hanoi University of Science, Vietnam National University
Research interests
A central theme of my research focuses on:
Hierarchical Models: Identifiability, Statistical Efficiency, and Model Selection Methods
Population genetics and Phylogenetics
Statistical Optimal Transport
Preprints and Publications
On the moment tensor of Dirichlet distributions and the posterior contraction of the Latent Dirichlet Allocation. In preparation.
Dat Do*, Sunrit Chakraborty*, Jonathan Terhorst, XuanLong Nguyen
Dendrogram of mixing measures: Hierarchical clustering and model selection for finite mixture models. Under review.
Dat Do*, Linh Do*, Scott McKinley, Jonathan Terhorst, XuanLong Nguyen
Functional optimal transport: map estimation and domain adaptation for functional data . Journal of Machine Learning Research (JMLR) 2024.
Jiacheng Zhu*, Aritra Guha*, Dat Do*, Mengdi Xu, XuanLong Nguyen, Ding Zhao.
Minimax Optimal Rate for Parameter Estimation in Multivariate Deviated Models. NeurIPS 2023.
Dat Do*, Huy Nguyen*, Khai Nguyen, Nhat Ho
Strong identifiability and parameter learning in regression with heterogeneous response. Under review.
Dat Do*, Linh Do*, XuanLong Nguyen
Beyond Black Box Densities: Parameter Learning for the Deviated Components. NeurIPS 2022 .
Dat Do*, Nhat Ho*, XuanLong Nguyen
Generalized Marcinkiewicz Laws for Weighted Dependent Random Vectors in Hilbert Spaces. Theory of probability and its applications, 2021.
Ta Cong Son, Le Van Dung, Dat Do, Ta Thi Trang.
On Label Shift in Domain Adaptation via Wasserstein Distance . Under review .
Trung Le, Dat Do, Tuan Nguyen, Huy Nguyen, Hung Bui, Nhat Ho, Dinh Phung.
Entropic Gromov-Wasserstein between Gaussian Distributions . In International Conference on Machine Learning, pages 12164–12203. PMLR, 2022 .
Khang Le, Dung Le, Huy Nguyen, Dat Do, Tung Pham, Nhat Ho.
|